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Abstract

Fungal endophytes are quite common in nature and some of them have been shown to have adverse effects against insects, nematodes,
and plant pathogens.

Our research program is aimed at using fungal endophytes-mediated plant defense as a novel biological control mechanism against the
coffee berry borer, the most devastating pest of coffee throughout the world. A survey of fungal endophytes in coffee plants from Hawaii,
Colombia, Mexico, and Puerto Rico has revealed the presence of various genera of fungal entomopathogens, including A4cremonium, Beau-
veria, Cladosporium, Clonostachys, and Paecilomyces. Two of these, B. bassiana and Clonostachys rosea, were tested against the coffee berry

borer and were shown to be pathogenic. This paper reviews the possible mode of action of entomopathogenic fungal endophytes.
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1. Introduction

The term endophyte was coined by the German scientist
Heinrich Anton De Bary (1884), and is used to define fungi
or bacteria occurring inside plant tissues without causing
any apparent symptoms in the host (Wilson, 1995). Fungal
endophytes have been detected in hundreds of plants, includ-
ing many important agricultural commodities such as wheat
(Larran et al., 2002a), bananas (Pocasangre et al., 2000; Cao
et al., 2002), soybeans (Larran et al., 2002b), and tomatoes
(Larran et al., 2001). Several roles have been ascribed to fun-
gal endophytes, including providing protection against her-
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bivorous insects (Breen, 1994; Clement et al., 1994), plant
parasitic nematodes (West et al., 1988; Elmi et al., 2000),
and plant pathogens (White and Cole, 1986; Dingle and
McGee, 2003; Wicklow et al., 2005).

Most reports on the effects of endophytes on insect her-
bivores have concentrated on turf and agronomic grasses
infected with endophytic clavicipitalean fungi (Ascomy-
cota: Hypocreales: Clavicipitaceae), which systemically
infect mostly grasses in the Poaceae, Juncaceae, and
Cyperaceae (Clay, 1989; Breen, 1994). For example,
Neotyphodium?-infected perennial ryegrass (Lolium perenne

3 Based on molecular analysis of 18S rDNA sequences, Glenn et al.
(1996) created the genus Neotyphodium to include the following vertically
transmitted endophytic anamorphs of Epichloé on Cs grasses: Acremonium
coenophialum Morgan—Jones & W. Gams, A. typhinum Morgan-Jones &
W. Gams, A. lolii Latch, M.J. Chr. & Samuels, A. chisosum J.F. White &
Morgan-Jones, A. starrii J.F. White & Morgan—Jones, A. huerfanum J.F.
White, G.T. Cole & Morgan—Jones, 4. uncinatum W. Gams, Petrini & D.
Schmidt, and 4. chilensi J.F. White & Morgan—Jones.
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L.) and tall fescue (Festuca arundinacea Schreb.), have been
shown to have negative effects on over 40 insect species in
six orders (Clement et al., 1994). Variable effects have
sometimes been reported, e.g. Clement et al. (2005)
reported different effects on two aphids (bird-cherry oat
aphid, Rhopalosiphum padi (L.) and rose grass aphid,
Metopopophium dirhodum (Walker)) and the wheat stem
sawfly (Mayetiola destructor (Say)) exposed to different
wild barleys infected with Neotyphodium. Fewer studies
have explored this relationship in nongrass systems. How-
ever, Jallow et al. (2004) reported drastic negative effects on
larvae of Helicoverpa armigera Hiibner reared on tomato
plants infected with a nongrass endophyte, Acremonium
strictum W. Gams.

Some endophytes belong to genera that include fungal
entomopathogens such as Beauveria (Ascomycota: Hypo-
creales). Beauveria bassiana (Balsamo) Vuillemin has been
reported as an endophyte in maize (Vakili, 1990; Bing
and Lewis, 1991, 1992a,b; Lomer et al., 1997; Cherry
et al., 1999, 2004; Wagner and Lewis, 2000; Arnold and
Lewis, 2005), potato, cotton, cocklebur, and jimsonweed
(Jones, 1994), tomato (Leckie, 2002; Ownley et al., 2004),
on the cocoa relative Theobroma gileri (Evans et al.,
2003), in the bark of Carpinus caroliniana Walter (Bills
and Polishook, 1991), in seeds and needles of Pinus monti-
cola Dougl. ex. D. Don (Ganley and Newcombe, 2005), in
opium poppy (Quesada-Moraga et al., 2006), on date palm
(Gomez-Vidal et al., 2006), in bananas (Akello et al., 2007),
and in coffee (Posada et al., 2007, and this paper). In addi-
tion, cocoa (Posada and Vega, 2005) and coffee seedlings
(Posada and Vega, 2006) have been successfully inoculated
with B. bassiana by depositing a spore suspension on the
radicle shortly after germination. Referring to Beauveria
globulifera (=B. bassiana), Steinhaus (1949) wrote: “It also
grows on corn and certain other plants but not so well as
on insects.” No specifics were given on how these observa-
tions were obtained. Fuller-Schaefer et al. (2005) have
reported on the colonization of sugarbeet roots by the fun-
gal entomopathogens B. bassiana and Metarhizium anisop-
liae (Metschn.) Sorokin.

Other entomopathogenic fungi have also been reported
as endophytes: Verticillium (=Lecanicillium) lecanii
(Zimm.) Viégas in an Araceae (Petrini, 1981); V. lecanii
and Paecilomyces farinosus (Holmsk.) Brown & Smith
(=Isaria farinosa) in the bark of C. caroliniana (Bills and
Polishook, 1991); Paecilomyces sp. in Musa acuminata
(Cao et al., 2002) and in rice (Tian et al., 2004); and Paeci-
lomyces varioti Bain. in mangroves (Ananda and Sridhar,
2002). Cladosporium, another genus containing insect path-
ogenic species (Abdel-Baky and Abdel-Salam, 2003 and
references therein), has been reported as an endophyte in
Festuca (An et al., 1993), in several Ericaceae (Okane
et al., 1998), various grasses (Dugan and Lupien, 2002),
mangroves (Suryanarayanan et al., 1998; Ananda and Sri-
dhar, 2002), Cuscuta reflexa Roxb., Abutilon indicum (L.)
Sweet and Calotropis gigantea (L.) R. Br. (Suryanarayanan
et al.,, 2000), M. acuminata (Cao et al., 2002), wheat

(Larran et al., 2002a), oak (Gennaro et al., 2003), Ilex
(Takeda et al., 2003), cacti (Suryanarayanan et al., 2005),
and in apples (Cammatti-Sartori et al., 2005).

The negative effects of endophytic clavicipitalean fungi
on insect herbivores have been generally ascribed to the
production of fungal metabolites (Funk et al., 1983; Bush
et al., 1997; Clay, 1988; Clay and Schardl, 2002), although
environmental factors (Bultman and Bell, 2003) and pres-
ence of mycorrhizae and nutrients (Barker, 1987; Vicari
et al., 2002) can influence the outcome of the association.
The effects have also been shown to cascade to the third
trophic level, e.g., parasitoids (Bultman et al., 1997). The
effects of various nonclavicipitalean pine endophytes (e.g.,
Phyllosticta, Rhabdocline, Leptostroma, and Cryptocline)
on spruce budworm (Choristoneura fumiferana (Clemens))
have also been ascribed to endophyte-produced metabo-
lites (Clark et al., 1989; Miller et al., 2002).

The traditional mode of infection of fungal entomopath-
ogens such as B. bassiana involves spore deposition on the
insect cuticle followed by formation of a germ tube, which
through enzymatic and mechanical action penetrates the
cuticle (Hajek and St. Leger, 1994). Once in the hemocoel,
hyphal growth causes tissue damage and nutrient deple-
tion. Some entomopathogenic fungi are also known to pro-
duce metabolites (see Section 4) but their involvement in
insect toxicosis is unclear (Gillespie and Claydon, 1989;
Hajek and St. Leger, 1994).

The pioneering work on entomopathogenic endophytes
was conducted using maize (Zea mays L.), B. bassiana,
and the European corn borer, Ostrinia nubilalis (Hiibner)
as a model system. Season-long suppression of insects,
measured as reduced tunneling of O. nubilalis, was
achieved by applying B. bassiana in an aqueous (Lewis
and Cossentine, 1986) or granular (Lewis and Bing, 1991)
formulation on corn plants. Lewis and Bing (1991) sus-
pected that O. nubilalis suppression was due to establish-
ment of B. bassiana in the plant, based on prior reports
of this phenomenon by Vakili (1990). In a subsequent
paper, Bing and Lewis (1991) used granular formulations
and injections of B. bassiana spore suspensions to obtain
season-long suppression of O. nubilalis and concluded that
this was due to B. bassiana becoming established as an
endophyte in maize. Their methodology for assessing B.
bassiana presence involved sterile techniques but does not
report surface-sterilization (Bing and Lewis, 1991, 1992a),
as is usually done when attempting to isolate endophytes
(Arnold et al., 2001). Nevertheless, in a subsequent paper
Bing and Lewis (1992b) report surface-sterilization of tis-
sues and recovery of B. bassiana, thus providing evidence
of an endophytic relationship. The possible mode of action
for endophytic B. bassiana against O. nubilalis was not dis-
cussed in any of these studies or in subsequent studies
(Lewis et al., 1996, 2001). The fact that no mycosed insects
were reported (except for Bing and Lewis, 1993—see Sec-
tion 4) suggests that the reduced tunneling reported in all
the papers (Lewis and Cossentine, 1986; Lewis and Bing,
1991; Bing and Lewis, 1991; Bing and Lewis, 1992a,b;
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Lewis et al., 1996) could be a result of feeding deterrence or
antibiosis. Bing and Lewis (1993) report that out of 1623 O.
nubilalis larvae sampled from control maize plants and
maize plants inoculated with B. bassiana, 1556 were nega-
tive for B. bassiana, based on mycosis. It is not clear how
the insects that exhibited mycosis became infected since
no conidia were observed internally in the plants (Wagner
and Lewis, 2000) thus indicating that the infective propag-
ulum was not available to infect insects. Conidial forma-
tion within the host plant was not found for
Neotyphodium endophytes in grasses either (Clay, 1989).

Wagner and Lewis (2000) have shown that, following
conidia germination and germ tube development, B. bassi-
ana enters maize tissues directly through the plant cuticle.
Subsequent hyphal growth occurs within the apoplast,
but only occasionally extending into the xylem elements.
The introduction of endophytic B. bassiana in maize is
compatible with other pest management strategies. It has
been shown that endophytic B. bassiana is compatible with
both B. thuringiensis (Bt) and carbofuran applications used
to suppress O. nubilalis (Lewis et al., 1996). Use of Bt trans-
genic corn did not have any detectable effect on the estab-
lishment of B. bassiana as a corn endophyte (Lewis et al.,
2001). Endophytic B. bassiana caused no mortality to
Coleomegilla maculata De Geer, a predator of O. nubilalis
eggs and larvae (Pingel and Lewis, 1996).

As part of a 3-year survey, we have identified hundreds
of fungal endophytes isolated from various tissues of the
coffee plant in several countries. In this paper we report
the presence of 16 different coffee endophytes belonging
to five genera of known entomopathogenic fungi: Acremo-
nium, Beauveria, Cladosporium, Clonostachys, and Paecilo-
myces. We also report on the pathogenicity of two of these
(B. bassiana and Clonostachys rosea) against the most dev-
astating pest of coffee throughout the world, the coffee
berry borer (Hypothenemus hampei (Ferrari), Coleoptera:
Curculionidae), and speculate on the possible mode of
action of entomopathogenic fungal endophytes.

2. Materials and methods
2.1. Endophyte isolation

Coffee (Coffea arabica L.) tissues, including leaves,
stems, roots, and various parts of the berry* (peduncle,
epicarp (skin of the fruit), crown, and seeds) were sur-
face-disinfected by submersing in 0.5% sodium hypochlo-
rite for 2 min, followed by 2min in 70% ethanol and
rinsing in sterile distilled water (Arnold et al., 2001).
The tissues were dried on sterile paper towels and the
edges were cut to remove dead tissue ensuing from the dis-
infection process, resulting in 4-9 mm? sections, six of
which were placed in each of two petri dishes containing
yeast maltose agar (YMA; Sigma-Aldrich Co., St. Louis,

4 Even though the correct botanical term is drupe, it is commonly
referred to as a berry.

MO) to which a 0.1% stock antibiotic solution was added.
The antibiotic stock consisted of 0.02 g of each of three
antibiotics (tetracycline, streptomycin, and penicillin) dis-
solved in 10 ml sterile distilled water, followed by filter-
sterilization through a 0.2-pm filter (Nalgene Disposable
Filterware, Nalge Nunc International Rochester, NY);
from this, 1 ml was added to each liter of medium. Any
fungal growth was subcultured on individual plates con-
taining YMA plus antibiotics for subsequent identifica-
tion. Voucher cultures are maintained at the Sustainable
Perennial Crops Laboratory (USDA, ARS) in Beltsville,
Maryland (Table 1).

2.2. Endophyte DNA extraction

All endophyte isolates were grown in potato dextrose
broth (Difco, Sparks, MD) at 125rpm on an Innova
4000 Incubator Shaker (New Brunswick Scientific Co.,
Inc., Edison, NJ) at 25°C. Tissue was then harvested,
lyophilized, and stored at —80 °C. For DNA extraction,
approximately 50 mg lyophilized mycelium was placed in
a 2 ml microcentrifuge tube with ca. 0.2 ml 1.0 zirconia-
glass beads (Cat # 1107911-0z, BIOSPEC, Bartlesville,
OK). The mycelium was crushed with a plastic pestle
and further ground in a FastPrep-120 sample grinder
(Q-BIOgene, Irvine, CA) for 3s at the maximum speed
setting of 6. The powdered mycelium was suspended in
700 pl detergent solution (2 M NaCl, 0.4% w/v deoxychol-
ic acid-sodium salt, 1% w/v polyoxyethylene 20 cetyl
ether) and then agitated for 14 s in the Fast-Prep at max-
imum speed. Vials were incubated 5 min at 55 °C in a heat
block and then centrifuged at 10,600 rpm for 5 min fol-
lowed by emulsion with 700 pl chloroform/isopropyl and
centrifugation at 10,600 rpm for 5 min. The aqueous phase
was transferred to a clean tube to which an equal volume
of 6 M guanidinium thiocyanate was added. Fifteen
microliters of silica powder were gently mixed with the
solution while incubating at room temperature for
5min, followed by 3s centrifugation, after which the
supernatant was discarded. The glass powder was rinsed
twice by suspending in 750 ul ethanol buffer (10 mM
Tris—=HCI, pH 8.0, 0.1 mM EDTA, 50% ethanol) with a
disposable transfer pipette, then collected by centrifuga-
tion and the supernatant discarded, and the glass powder
pellet was dried on a heat block at 55°C for 5-10 min.
The glass powder was rehydrated with 105 pl ultra-pure
water and the genomic DNA eluted by incubating on a
heat block at 55°C for 5-10 min. Following vortexing
and centrifugation, 100 ul of the aqueous supernatant
was transferred to a clean tube.

2.3. Endophyte DNA sequencing and analyses

The internal transcribed spacer region (ITS) of the
nuclear rDNA repeat was sequenced for each isolate; prim-
ers ITS1-F (fungal-specific) (Gardes and Bruns, 1993) and
ITS4 (White et al., 1990) were used for both amplification
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Table 1

Fungal endophytes from entomopathogenic genera isolated from various coffee tissues collected in Colombia, Hawaii, Mexico, and Puerto Rico

SPCL# Fungal endophyte GenBank  Tissue Collection site and date GPS

03047 Acremonium alternatum n/a Epicarp COLOMBIA. Caldas, Chinchind, December, 2003 N 5°00", W 75°36'

03039 Acremonium sp. DQ287230 Root USA. Hawaii, Kona, Kona Experimental Station, N 19°32.048', W

September 2003 155°55.494'

03032 Beauveria bassiana DQ287236 Seed COLOMBIA. Caldas, Chinchind, September 2003 N 5°00', W 75°36/,

03042  Beauveria bassiana DQ287232 Epicarp COLOMBIA. Caldas, Chinchina, September 2003 N 5°00', W 75°36

03043 Beauveria bassiana DQ287231 Peduncle COLOMBIA. Caldas, Chinchina, September 2003 N 5°00', W 75°36

03044 Beauveria bassiana DQ287233 Crown COLOMBIA. Caldas, Chinchina, September 2003 N 5°00", W 75°36'

02002 Cladosporium cf. DQ299297 Leaves PUERTO RICO. Adjuntas, June 2002 N 18°10.959', W
cladosporioides 066°51.029

04003 Cladosporium cf. DQ299302 Leaves USA. Hawaii, Kona, Kona Experimental Station, N 19°32.048', W
cladosporioides March 2004 155°55.494

04001 Cladosporium cf. DQ299296 Leaves USA. Maryland, Beltsville (Behnke’s Nurseries), N 39°02.424', W
sphaerospermum January 2004 076°54.347

03073 Cladosporium sp. 1 DQ299303 Peduncle USA. Hawaii, Kona, Kona Experimental Station, N 19°32.048', W

November 2003 155°55.494'

04002 Cladosporium sp. 2 DQ299301 Seeds USA. Hawaii, Kona, Kona Experimental Station, N 19°32.048', W
(C. cladosporioides complex) March 2004 155°55.494'

03071 Cladosporium sp. 3 DQ299299 Leaves COLOMBIA. Caldas, Chinchina, July 2003 N 5°00', W 75°36'
(C. cladosporioides complex)

03070 Cladosporium sp. 4 DQ299298 Epicarp COLOMBIA. Caldas, Chinchina, July 2003 N 5°00', W 75°3¢6
(C. cladosporioides complex)

03072 Cladosporium sp. 4 DQ299300 Crown COLOMBIA. Caldas, Chinchina, July 2003 N 5°00’, W 75°3¢6
(C. cladosporioides complex)

03062 Clonostachys rosea DQ287243 Leaves COLOMBIA. Caldas, Chinchina, September 2003 N 5°00’, W 75°36

03076  Paecilomyces cf. fumosoroseus 1DQ287244 Crown PUERTO RICO. Adjuntas, June 2003 N 18°10.226/, W 066°

47.869

03066  Paecilomyces cf. javanicus DQ287245 Peduncle COLOMBIA. Caldas, Chinchina, September 2003 N 5°00’, W 75°36

03067  Paecilomyces sp. 1 (near P. DQ287246 Epicarp MEXICO. Chiapas, Cacahoatan, Rancho El Paraiso, N 15°00'27.6", W
inflatus) February 2003 92°09'51.2"

03069  Paecilomyces sp. 2 (near P. DQ287248 Seedling - USA. Hawaii, Kona Experimental Station, September N 19°32.048', W
lilacinus) Root 2003 155°55.494'

and sequencing. PCRs were performed in 25 pl reaction
volumes with 12.5 pl of PCR Master Mix (Promega Corp.,
Madison, WI), 1.25 ul each of 10 uM primers, and 10 pl of
diluted (10- to 100-fold) DNA template. Amplification was
achieved with an initial denaturation step of 5 min at
94 °C; 35 cycles of 30s at 94 °C, 45s at 50°C, and 45s
at 72°C; and a final extension of 7min at 72 °C. The
PCR products were cleaned with Montage PCR Centrifu-
gal Filter Devices (Millipore Corp., Billerica, MA) accord-
ing to the manufacturer’s protocol. Cleaned PCR products
were sequenced with BigDye Terminator sequencing
enzyme v.3.1 (Applied Biosystems, Foster City, CA) in
the reaction: 2 pl of diluted BigDye in a 1:3 dilution of Big-
Dye:dilution buffer (400 mM Tris, pH 8.0, 10 mM MgCl,);
0.3 pl of 10 uM primer; 10-20 ng of cleaned PCR template;
and H,O to 5 pl total reaction volume. Cycle sequencing
parameters consisted of a 2min denaturation step at
94 °C, then 35 cycles of 94 °C for 39s, 50 °C for 15s,
and 60 °C for 4 min. Sequencing reactions were cleaned
by ethanol precipitation and sequenced on an ABI 3100
Genetic Analyzer (Applied Biosystems, Foster City, CA).
Sequencing reactions were edited and contiguous sequences
for each isolate were assembled in Sequencher v.4.1.4
(Gene Codes Corp., Ann Arbor, MI). DNA sequences
have been deposited in GenBank (Table 1).

2.4. Identification of isolates

Initial identification of isolates was obtained by BLAST
analysis (http://www.ncbi.nlm.nih.gov/BLAST/). Morpho-
logical identification for each isolate was then confirmed
with the aid of the following keys and manuals: Paecilomy-
ces isolates were identified to genus and species based on
Samson (1974) and further confirmed by phylogenetic anal-
ysis as outlined by Rehner and Buckley (2005); Beauveria
isolates were identified to genus based on Humber (1997);
Cladosporium and Acremonium were identified to genus
using St.-Germain and Summerbell (1996) and Barnett
and Hunter (1998); and Clonostachys rosea and Acremo-
nium alternatum were identified to species by W. Gams
(CBS, The Netherlands).

2.5. Insect bioassays

Adult coffee berry borers, less than 3-months-old, were
reared on artificial diet (Villacorta, 1985; Portilla, 2000).
Prior to initiating the bioassay, adult insects were washed
in a 0.5% sodium hypochlorite solution with 0.01% Triton
X-100 (Sigma Chemical Co., St. Louis, MO) and gently sha-
ken for 10 min, then rinsed three times in sterile
distilled water and dried in a container lined with sterile
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paper towels. This was done to eliminate any fungi present
on the insect cuticle.

Endophytic single spore isolates of B. bassiana (Sustain-
able Perennial Crops Laboratory Culture Collec-
tion = SPCL 03047) and Clonostachys rosea (SPCL 03062)
stored in 10% glycerol at —80 °C were grown in Sabouraud’s
dextrose agar (Difco, Sparks, MD) and YMA, respectively,
and incubated at 25 °C. All cultures were less than 30-days-
old when used in the bioassays. Spores were collected with a
spatula and placed in sterile tubes containing 10 ml of sterile
distilled water plus 0.1% Triton X-100 (Sigma Chemical Co.,
St. Louis, MO). The concentrations were adjusted to 1 x 10’
spores per ml using a hemacytometer.

Spore germination was determined by platinga 1 x 1073
spore suspension on 2.5% Noble agar (Difco, Sparks, MD)
incubated at 27 °C. Germination was assessed at 24 h and
48 h by taking 3 samples of the media and placing them indi-
vidually on slides, followed by counting 100 spores. Spores
were deemed to have germinated when the longitude of the
germ tube was longer than half the diameter of the spores.

The coffee berry borer adults assigned to the treatments
were dipped in a 10-ml spore suspension with 1 x 10’
spores per ml plus 0.1% Triton X-100; control insects were
dipped in sterile distilled water plus 0.1% Triton X-100.
Insects were gently shaken for 2 min while dipped in their
respective treatments and then placed in a sterile container
from which they were taken individually with a sterile
paintbrush and placed in a vial containing two pieces of
sterile Whatman #1 filter paper (2.1 cm diam; Whatman
Inc., Clifton, NJ) moistened with 100 pl of sterile distilled
water. The vials were closed with caps and sterile distilled
water was added to the filter paper as needed. All treat-
ments were incubated in the dark at 25°C in a growth
chamber (Model E-36 L, Percival Scientific, Inc., Boone,
IA). Insect mortality was assessed on a daily basis.

The experiment was conducted as a completely random-
ized design with each isolate replicated 40 times and beetles
individually placed in separate vials. For controls, two sets
of 40 insects were used, each insect in an individual vial.
For statistical purposes, mortality was analyzed by group-
ing the experimental units as 4 replicates with 10 insects.
Percent insect mortality was analyzed using proc mixed
(SAS Institute, Inc., 2001). Average insect survival time
was analyzed using survival analysis, which includes all
individuals (JMP SAS, 2000), in contrast to LTs,, which
only includes those that have died.

Our assessments of the saprotrophic phase were based
on the time it takes for four events to occur after the insect
has died: (1) number of days after death until mycelium is
first observed on the insect corpse; (2) number of days from
the first formation of mycelium until the mycelium has
reached a maximum coverage of the corpse; (3) time
between maximum mycelium coverage until conidiophores
are first seen; and (4) time elapsed from first observation of
conidiophores until conidia begin to discharge. Observa-
tions were made every 24 h and in cases where a certain
event seemed to be well advanced at the time of the obser-

vation, indicating it had been achieved shortly after the
previous observation, the time to that specific event was
back-estimated 12 h. The data for each event were analyzed
using proc mixed (SAS Institute, Inc., 2001).

Spore production was determined by randomly selecting
5 beetles (out of 40) within each treatment for which there
was sporulation. Each beetle was washed with 5 ml of sterile
distilled water with 0.1% Triton X-100 and sonicated for
1 min. A diluted spore suspension was placed in three differ-
ent hemacytometers and eight 16-square grids were counted
for each one. The data were analyzed using a one-way anal-
ysis of variance (ANOVA proc mixed; SAS Institute, Inc.,
2001). In all tests, P < 0.05 was considered significant.

3. Results

Isolation of endophytic fungi from coffee tissues collected
in Hawaii, Colombia, Puerto Rico, and Mexico revealed the
presence of 16 species in five genera of entomopathogenic
fungi in coffee plants (Table 1). These were: Acremonium
sp. from roots collected in Hawaii; Acremonium alternatum
Link: Fries from the epicarp of coffee berries collected in
Colombia; Beauveria bassiana from the peduncle, epicarp,
crown, and seed of coffee berries from Colombia; Beauveria
brongniartii (Sacc.) Petch from the crown of a coffee berry
collected in Hawaii; Cladosporium cf. sphaerospermum,
Cladosporium. sp. #1, Cladosporium cf. cladosporioides,
and Cladosporium sp. 2-4 (in the C. cladosporioides complex)
from leaves collected in Puerto Rico, Colombia, Hawaii, and
Maryland (a local plant nursery that sells coffee seedlings);
from the epicarp and crown of berries from Colombia and
from the peduncle and seeds from berries collected in
Hawaii; Clonostachys rosea (Link) Schroers et al. from leaves
collected in Colombia; Paecilomyces cf. fumosoroseus’ from
the crown of berries in Puerto Rico; Paecilomyces cf. javani-
cus from peduncles collected in Colombia; a Paecilomyces
sp. (near P. inflatus) from the epicarp of berries collected in
Mexico; and another Paecilomyces sp. (near P. lilacinus)
from roots of seedlings from Hawaii (Table 1). These fungi
span three different orders within the phylum Ascomycota:
Mycosphaerellales (Cladosporium spp. in the Mycosphae-
rellaceae); Eurotiales (Paecilomyces spp. in the Trichocoma-
ceae); Hypocreales (Clonostachys rosea in  the
Bionectriaceae; Beauveria bassiana in the Cordycipitaceae;
and Acremonium spp. in the Nectriaceae).

Percentage of conidia germinating was 83% for the
endophytic B. bassiana (at 48 h) and 83% for C. rosea (at
24 h). Cumulative mortality, 21 days post-inoculation,
was 100% for B. bassiana and 82.5% for C. rosea (Fig. 1).
There were significant differences in mortality between
fungi-treated insects (df = 3,15, f= 1809, P <0.0001) and
the control. No fungal infection was ever observed in any

5 The taxonomy for Paecilomyces has changed recently and the isolate
originally identified as Paecilomyces cf. fumosoroseus has since been
transferred to Isaria fumosorosea (Hypocreales: Cordycipitaceae) (Hum-
ber, 2007).
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Fig. 1. Daily and cumulative mortality distribution (%) for adult coffee berry borers inoculated with a 1 x 107 spores per ml of endophytic Beauveria

bassiana (SPCL 03047) or Clonostachys rosea (SPCL 03062) spore suspension.
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Fig. 2. Average survival time for adult coffee berry borers inoculated with a 1 x 107 spores per ml of endophytic Beauveria bassiana (SPCL 03047) or

Clonostachys rosea (SPCL 03062) spore suspension.

of the controls. The average survival time for insects trea-
ted with B. bassiana was 4.8 +0.2 days and 14.7 £0.75
days for C. rosea-treated insects, compared to 15.0 0.6
for the controls (Fig. 2). Spore production per insect was
1.2x 10" +4.0 x 10° for B. bassiana and 3.6 x 10°+
9.3 x 10° for C. rosea. The life cycle (time from inoculation
to spore discharge from the insect corpse) for B. bassiana
was 9.9 + 0.2 days (Fig. 3) while C. rosea completed its life
cycle in 16.4 4+ 1.1 days (Fig. 4).

4. Discussion

We have identified several endophytic fungi in coffee tis-
sues that belong to genera containing entomopathogenic
fungi (Table 1). Bioassays conducted with two of the iso-
lates, B. bassiana and C. rosea, indicate that these are path-
ogenic to the coffee berry borer. Even though the role that
these endophytic fungi might have against insects is not
clear, we can speculate on their mode of action.

Research on B. bassiana as a maize endophyte suggests
that the reduced tunneling of O. nubilalis could be due to

the presence of fungal metabolites that cause feeding deter-
rence or antibiosis. This is based on the overwhelming
absence of B. bassiana infection within O. nubilalis individ-
uals that feed on endophytic plants (Lewis and Bing, 1991;
Bing and Lewis, 1991, 1992a,b), despite a report by Bing
and Lewis (1993) that showed 2.5% mycosis on insects
feeding on endophytic plants (and 1.7% mycoses on insects
feeding on plants with no B. bassiana). The lack of B. bas-
siana conidia in endophytic plants (Wagner and Lewis,
2000) also suggests a mode of action involving feeding
deterrence or antibiosis rather than direct fungal infection.
If spores were present, per os infection could be possible
(Gabriel, 1959; Broome et al., 1976; Bell and Hamalle,
1980) although it could be difficult to discern between
actual per os infection and infection due to spores coming
in contact with the insect cuticle (Allee et al., 1990; Inglis
et al., 1996). A study by Cherry et al. (1999, 2004) in Africa
supports the feeding deterrence/antibiosis hypothesis. They
studied B. bassiana endophytism in Africa when attempting
to control the maize stem borer (Sesamia calamistis Hamp-
son) by treating maize seeds with dry B. bassiana conidia,
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B. bassiana
9.9+ 0.2 (n= 40)

Spores discharged
2.340.1 (n=40)

Fungal
Inoculation

Time to kill

Spore formation 4.80.2 (n=40)
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Insect covered with mycelium
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Mycelium starts to grow

Fig. 3. Life cycle (days; mean + SE) for adult coffee berry borers inoculated with a 1 x 107 spores per ml of endophytic Beauveria bassiana (SPCL 03047)
spore suspension. The assessments were made daily after fungal inoculation and included days to (1) insect death; (2) mycelium starting to grow; (3) insect
covered with mycelium; (4) spore formation; and (5) spore discharge.

C. rosea
16.4 + 1.1 (n=24)

Spores discharged
1.3 £0.3 (n=25)

Fungal
Incculation

Time to kill

Spore formation 12.9 £ 1.1 (n=32)
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Insect covered with mycelium

04+0.1 (n=14) 1.4+0.2 (n=32)
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Fig. 4. Life cycle (days; mean =+ SE) for adult coffee berry borers inoculated with a 1 x 107 spores per ml of endophytic Clonostachys rosea (SPCL 03062)
spore suspension. The assessments were made daily after fungal inoculation and included days to (1) insect death; (2) mycelium starting to grow; (3) insect
covered with mycelium; (4) spore formation; and (5) spore discharge.



F.E. Vega et al. | Biological Control 46 (2008) 72-82 79

by spraying conidial suspensions in the leaf axils, and by
injecting conidial suspension in the stem. Lomer et al.
(1997) had previously reported that B. bassiana could be
isolated as an endophyte in maize in Africa, and Cherry
et al. (1999, 2004) showed reduced tunneling of the stem
borer in plants treated with B. bassiana, even though no
attempt was made to reisolate the fungus. In plants injected
with B. bassiana, larvae were lighter than in the control
plants suggesting they did not feed as much, supporting
the deterrence/antibiosis hypothesis. None of the dead lar-
vae exhibited symptoms of mycosis.

Beauveria spp. produce several metabolites, including
bassianin, beauvericin, bassianolide, beauveriolide, bassi-
acridin, oosporein, and tenellin (Vining et al., 1962; Hamill
et al., 1969; Suzuki et al., 1977; Roberts, 1981; Jeffs and
Khachatourians, 1997; Strasser et al., 2000; Quesada-
Moraga and Vey, 2004). Beauvericin is toxic to Culex pipi-
ens L., rupturing the midgut epithelium and dissolving the
ribosomes (Zizka and Weiser, 1993), and to Aedes aegypti
(L.) and Calliphora erythrocephala Meigen (Grove and
Pople, 1962). In contrast, Champlin and Grula (1979)
reported that beauvericin was not toxic to Helicoverpa
zea Boddie and that bassianolide caused temporary atony.
Paecilomyces fumosoroseus (Wize) Brown & Smith (=/Isaria
fumosorosea) has also been reported to produce beauveri-
cin (Bernardini et al., 1975) and beauverolides (Jegorov
et al., 1994), and Verticillium lecanii (=Lecanicillium
lecanii) also produces bassionalide (Suzuki et al., 1977).
Other entomopathogenic fungi also produce metabolites,
e.g., Isaria spp. Pers.: Fr. produces isariin (Briggs et al.,
1966); Hirsutella thompsonii Fisher produces phomalactone
(Krasnoff and Gupta, 1994) and hirsutellin A (Mazet et al.,
1995), which are known to have ribonuclease activity (Liu
et al., 1996) and to be toxic to the citrus rust mite (Omoto
and McCoy, 1998); Oospora destructor (Metschn.) Delacr.
produces destruxins (Kodaira, 1962) that are known to be
toxic to Delia antiqua (Meigen) (Poprawski et al., 1985);
Metarhizium spp. produces destruxins and cytochalasins
(Roberts, 1981); Paecilomyces tenuipes (Peck) Samson
(=Isaria tenuipes) produces tenuipesine (Kikuchi et al.,
2004); Akanthomyces gracilis Samson and Evans produces
akanthomycin (Wagenar et al., 2002); Cordyceps pseudo-
militaris Hywel-Jones & Sivichai produces coryanhidrides
(Isaka et al., 2000); Tolypocladium spp. produce efrapeptins
(Krasnoff and Gupta, 1992); Aschersonia aleyrodis Webber
produces destruxins and homodestruxins (Krasnoff et al.,
1996); and Aschersonia tubulata produces dustanin (Boon-
phong et al., 2001). For a review on metabolites produced
by entomopathogenic fungi, see Roberts (1981), Gillespie
and Claydon (1989), and Strasser et al. (2000). Neverthe-
less, it is possible that production of these metabolites, in
addition to possibly having a function against insects,
might also act against other fungi or bacteria. For example,
Lee et al. (2005) surveyed 47 entomopathogenic fungi and
found that 81% produced anti-Bacillus compounds, while
64% produced anti-Staphylococcus compounds. Similarly,
antibacterial effects have been reported for oosporein (Vin-

ing et al., 1962; Wainwright et al., 1986) and beauvericin
(Castlebury et al., 1999). Metabolites from other fungi have
also been reported to act against entomopathogenic fungi.
For example, a Penicillium urticae Bainier metabolite
known as patulin has been shown to inhibit growth and
germination of B. bassiana (Shields et al., 1981).

We have isolated several fungal endophytes belonging to
genera that include fungal entomopathogens. It would be
interesting to determine how these compare with nonendo-
phytic isolates. This type of survey for entomopathogenic
fungal endophytes might reveal new isolates with potential
in biocontrol against pests of agronomic importance. If fun-
gal entomopathogens occurring as endophytes exert their
action against insects via the production of metabolites, then
they would be analogous to the mode of action reported for
clavicipitaceous fungi (see Section 1). This raises the issue of
whether inoculation of agronomically important plants with
fungal entomopathogens might create a problem by produc-
ing metabolites that could potentially enter the food chain.
This is an area in need of detailed studies.

Acknowledgments

Special thanks to Skip Bittenbender, Donna R. Ching,
Brent S. Sipes, Virginia Easton Smith, and Alan Teramura
(University of Hawaii at Manoa); Ray Baker (Lyon Arbore-
tum), Tim Martin and Richard Loero (Kauai Coffee Co.),
David W. Orr (Waimea Arboretum), Chifumi Nagai (Ha-
wail Agriculture Research Center), and George Staples
(Bishop Museum) for their hospitality; and to Rosa Amelia
Franqui and Evelio Hernandez Lopez (University of Puerto
Rico). Thanks also to Ann Simpkins (USDA, ARS, Belts-
ville, MD) for excellent field assistance in Hawaii, Mexico,
and Puerto Rico as well as her excellent work in our labora-
tory; to Cindy Park (formerly with USDA, ARS, Beltsville,
MD) for teaching the senior author how to sequence and for
invaluable laboratory support to MCA; to Carlos Quintero
(Centro Nacional de Investigaciones de Café) for assistance
in obtaining field samples in Colombia; and M. Greenstone
(USDA) for comments on a previous version of this manu-
script. We are grateful to Walter Gams (Centraalbureau
voor Schimmelcultures, The Netherlands) for identifying
endophytic Clonostachys rosea and Acremonium alternatum.
The use of trade, firm, or corporation names in this publica-
tion is for the information and convenience of the reader.
Such use does not constitute an official endorsement or ap-
proval by the United States Department of Agriculture or
the Agricultural Research Service of any product or service
to the exclusion of others that may be suitable.

References

Abdel-Baky, N.F., Abdel-Salam, A.H., 2003. Natural incidence of
Cladosporium spp. as a biocontrol agent against whiteflies and aphids
in Egypt. Journal of Applied Entomology 127, 228-235.

Akello, J.T., Dubois, T., Gold, C.S., Coyne, D., Nakavuma, J., Paparu,
P., 2007. Beauveria bassiana (Balsamo) Vuillemin as an endophyte in



80 F.E. Vega et al. | Biological Control 46 (2008) 72-82

tissue culture banana (Musa spp.). Journal of Invertebrate Pathology
96, 34-42.

Allee, L.L., Goettel, M.S., Gol’berg, A., Whitney, H.S., Roberts, D.W.,
1990. Infection by Beauveria bassiana of Leptinotarsa decemlineata
larvae as a consequence of fecal contamination of the integument
following per os inoculation. Mycopathologia 111, 17-24.

An, Z.-Q., Siegel, M.R., Hollin, W., Tsai, H.-F., Schmidt, D., Schardl,
C.L., 1993. Relationships among non-Acremonium sp. fungal endo-
phytes in five grass species. Applied and Environmental Microbiology
59, 1540-1548.

Ananda, K., Sridhar, K.R., 2002. Diversity of endophytic fungi in the
roots of mangrove species on the west coast of India. Canadian
Journal of Microbiology 48, 871-878.

Arnold, A.E., Maynard, Z., Gilbert, G.S., 2001. Fungal endophytes in
dicotyledonous neotropical trees: patterns of abundance and diversity.
Mycological Research 105, 1502-1507.

Arnold, A.E., Lewis, L.C., 2005. Ecology and evolution of fungal
endophytes, and their roles against insects. In: Vega, F.E., Blackwell,
M. (Eds.), Insect-Fungal Associations: Ecology and Evolution. Oxford
University Press, New York, pp. 74-96.

Barnett, H.L., Hunter, B.B., 1998. Illustrated Genera of Imperfect Fungi,
fourth ed. APS Press, MN.

Barker, G.M., 1987. Mycorrhizal infection influences Acremonium-
induced resistance to Argentine stem weevil in grasses. Proceedings
of the New Zealand Weed and Pest Control Conference 40, 199-203.

Bell, J.V., Hamalle, R.J., 1980. Heliothis zea larval mortality time from
topical and per os dosages of Nomuraea rileyi conidia. Journal of
Invertebrate Pathology 35, 182-185.

Bernardini, M., Carilli, A., Pacioni, G., Santurbano, B., 1975. Isolation of
beauvericin from Paecilomyces fumoso-roseus. Phytochemistry 14,
1865.

Bills, G.F., Polishook, J.D., 1991. Microfungi from Carpinus caroliniana.
Canadian Journal of Botany 69, 1477-1482.

Bing, L.A., Lewis, L.C., 1991. Suppression of Ostrinia nubilalis (Hiibner)
(Lepidoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo)
Vuillemin. Environmental Entomology 20, 1207-1211.

Bing, L.A., Lewis, L.C., 1992a. Temporal relationships between Zea mays,
Ostrinia nubilalis (Lep.: Pyralidae) and endophytic Beauveria bassiana.
Entomophaga 37, 525-536.

Bing, L.A., Lewis, L.C., 1992b. Endophytic Beauveria bassiana (Balsamo)
Vuillemin in corn: the influence of the plant growth stage and Ostrinia
nubilalis (Hiibner). Biocontrol Science and Technology 2, 39-47.

Bing, L.A., Lewis, L.C., 1993. Occurrence of the entomopathogen
Beauveria bassiana (Balsamo) Vuillemin in different tillage regimes
and in Zea mays L. and virulence towards Ostrinia nubilalis (Hiibner).
Agriculture Ecosystems & Environment 45, 147-156.

Boonphong, S., Kittakoop, P., Isaka, M., Palittapongarnpim, P., Jatura-
pat, A., Danwisetkanjana, K., Tanticharoen, M., Thebtaranonth, Y.,
2001. A new antimycobacterial, 3b-acetoxy-15a,22-dihydroxyhopane,
from the insect pathogenic fungus Aschersonia tubulata. Planta Medica
67, 279-281.

Breen, J.P., 1994. Acremonium endophyte interactions with enhanced
plant resistance to insects. Annual Review of Entomology 39, 401-423.

Broome, J.R., Sikorowski, P.P., Norment, B.R., 1976. A mechanism of
pathogenicity of Beauveria bassiana on larvae of the imported fire ant,
Solenopsis richteri. Journal of Invertebrate Pathology 28, 87-91.

Briggs, L.H., Fergus, B.J., Shannon, J.S., 1966. Chemistry of fungi—IV.
Cyclodepsipeptides from a new species of Isaria. Tetrahedron Part 1
(Suppl. 8), 269-278.

Bultman, T.L., Borowicz, K.L., Schneble, R.M., Coudron, T.A., Bush,
L.P., 1997. Effect of a fungal endophyte on the growth and survival of
two Euplectrus parasitoids. Oikos 78, 170-176.

Bultman, T.L., Bell, G.D., 2003. Interaction between fungal endophytes
and environmental stressors influences plant resistance to insects.
Oikos 103, 182-190.

Bush, L.P., Wilkinson, H.H., Schardl, C.L., 1997. Bioprotective alkaloids
of grass-fungal endophyte symbioses. Plant Physiology 114, 1-7.

Cammatti-Sartori, V., da Silva-Ribeiro, R.T., Valdebenito-Sanhueza,
R.M., Pagnocca, F.C., Echeverrigaray, S., Azevedo, J.L., 2005.
Endophytic yeasts and filamentous fungi associated with southern
Brazilian apple (Malus domestica) orchards subjected to conventional,
integrated or organic cultivation. Journal of Basic Microbiology 45,
397-402.

Cao, L.X., You, J.L., Zhou, S.N., 2002. Endophytic fungi from Musa
acuminata leaves and roots in South China. World Journal of
Microbiology & Biotechnology 18, 169-171.

Castlebury, L.A., Sutherland, J.B., Tanner, L.A., Henderson, A.L.,
Cerniglia, C.E., 1999. Use of a bioassay to evaluate the toxicity of
beauvericin to bacteria. World Journal of Microbiology & Biotech-
nology 15, 119-121.

Champlin, F.R., Grula, E.A., 1979. Noninvolvement of beauvericin in the
entomopathogenicity of Beauveria bassiana. Applied and Environ-
mental Microbiology 37, 1122-1125.

Cherry, A.J., Lomer, C.J., Djegui, D., Shulthess, F., 1999. Pathogen
incidence and their potential as microbial control agents in IPM of
maize stem borers in West Africa. BioControl 44, 301-327.

Cherry, A.J., Banito, A., Djegui, D., Lomer, C., 2004. Suppression of the
stem-borer Sesamia calamistis (Lepidoptera; Noctuidae) in maize
following seed dressing, topical application and stem injection with
African isolates of Beauveria bassiana. International Journal of Pest
Management 50, 67-73.

Clark, C.L., Miller, J.D., Whitney, N.J., 1989. Toxicity of conifer needle
endophytes to spruce budworm. Mycological Research 93, 508-512.

Clay, K., 1988. Fungal endophytes of grasses: a defensive mutualism
between plants and fungi. Ecology 69, 10-16.

Clay, K., 1989. Clavicipitaceous endophytes of grasses: their potential as
biocontrol agents. Mycological Research 92, 1-12.

Clay, K., Schardl, C., 2002. Evolutionary origins and ecological conse-
quences of endophyte symbiosis with grasses. American Naturalist
160, S99-S127.

Clement, S.L., Kaiser, W.J., Eichenseer, H., 1994. Acremonium endo-
phytes in germplasms of major grasses and their utilization for insect
resistance. In: Bacon, C.W., White, J. (Eds.), Biotechnology of
Endophytic Fungi of Grasses. CRC Press, Boca Raton, FL, pp.
185-199.

Clement, S.L., Elberson, L.R., Bosque-Pérez, N.A., Schotzko, D.J., 2005.
Detrimental and neutral effects of wild barley-Neotyphodium fungal
endophyte associations on insect survival. Entomologia Experimen-
talis et Applicata 114, 119-125.

De Bary, H.A., 1884. Vergleichende Morphologie und Biologie der Pilze
Mycetozoen und Bacterien. Verlag von Wilhelm Engelmann, Leipzig.

Dingle, J., McGee, P.A., 2003. Some endophytic fungi reduce the density
of pustules of Puccinia recondita f. sp. tritici in wheat. Mycological
Research 107, 310-316.

Dugan, F.M., Lupien, S.L., 2002. Filamentous fungi quiescent in seeds
and culm nodes of weedy and forage grass species endemic to the
Palouse Region of Washington and Idaho. Mycopathologia 156, 31—
40.

Elmi, A.A., West, C.P., Robbins, R.T., Kirkpatrick, T.L., 2000. Endo-
phyte effects on reproduction of a root-knot nematode (Meloidogyne
marylandi) and osmotic adjustment in tall fescue. Grass and Forage
Science 55, 166-172.

Evans, H.C., Holmes, K.A., Thomas, S.E., 2003. Endophytes and
mycoparasites associated with an indigenous forest tree, Theobroma
gileri, in Ecuador and a preliminary assessment of their potential as
biocontrol agents of cocoa diseases. Mycological Progress 2, 149-160.

Fuller-Schaefer, C., Jung, K., Jaronski, S., 2005. Colonization of
sugarbeet roots by entomopathogenic fungi. In: Proceedings of the
38th Annual Meeting of the Society for Invertebrate Pathology,
Anchorage, Alaska, p. 49.

Funk, C.R., Halisky, P.M., Johnson, M.C., Siegel, M.R., Stewart, A.V.,
Ahmad, S., Hurley, R.H., Harvey, 1.C., 1983. An endophytic fungus
and resistance to sod webworms: association in Lolium perenne L..
Bio/Technology 1, 189-191.



F.E. Vega et al. | Biological Control 46 (2008) 72-82 81

Ganley, R.J., Newcombe, G., 2005. Fungal endophytes in seeds and
needles of Pinus monticola. Mycological Research 110, 318-327.

Gabriel, B.P., 1959. Fungus infection of insects via the alimentary tract.
Journal of Invertebrate Pathology 1, 319-330.

Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity for
basidiomycetes—application to the identification of mycorrhizae and
rusts. Molecular Ecology 2, 113-118.

Gennaro, M., Gonthier, P., Nicolotti, G., 2003. Fungal endophytic
communities in healthy and declining Quercus robur L. and Q.
cerris L. trees in northern Italy. Journal of Phytopathology 151,
529-534.

Gillespie, A.T., Claydon, N., 1989. The use of entomogenous fungi for
pest control and the role of toxins in pathogenesis. Pesticide Science
27, 203-215.

Glenn, A.E., Bacon, C.W., Price, R., Hanlin, R.T., 1996. Molecular
phylogeny of Acremonium and its taxonomic implications. Mycologia
88, 369-383.

Goémez-Vidal, S., Lopez-Llorca, L.V., Jansson, H.-B., Salinas, J., 2006.
Endophytic colonization of date palm (Phoenix dactylifera L.) leaves
by entomopathogenic fungi. Micron 37, 624-632.

Grove, J.F., Pople, M., 1962. The insecticidal activity of beauvericin and
the enniatin complex. Mycopathologia 70, 103-105.

Hajek, A.E., St. Leger, R.J., 1994. Interactions between fungal pathogens
and insect hosts. Annual Review of Entomology 39, 293-322.

Hamill, R.L., Higgens, C.E., Boaz, H.E., Gorman, M., 1969. The
structure of beauvericin, a new depsipeptide antibiotic to Artemia
salina. Tetrahedron Letters 49, 4255-4258.

Humber, R.A., 1997. Fungi: Identification. In: Lacey, L.A. (Ed.), Manual
of Techniques in Insect Pathology. Academic Press, London, pp. 153—
185.

Humber, R.A. 2007. Recent phylogenetically based reclassifications of
fungal pathogens of invertebrates: Available from <http://www.
sipweb.org/>.

Inglis, G.D., Johnson, D.L., Goettel, M.S., 1996. Effect of bait substrate
and formulation on infection of grasshopper nymphs by Beauveria
bassiana. Biocontrol Science and Technology 6, 35-50.

Isaka, M., Tanticharoen, M., Thentaranonth, Y., 2000. Cordyanhydrides A
and B. Two unique anhydrides from the insect pathogenic fungus
Cordyceps pseudomilitaris BCC 1620. Tetrahedron Letters 41, 1657—
1660.

Jallow, M.F.A., Dugassa-Gobena, D., Vidal, S., 2004. Indirect interaction
between and unspecialized endophytic fungus and a polyphagous
moth. Basic and Applied Ecology 5, 183-191.

Jeffs, L.B., Khachatourians, G.G., 1997. Toxic properties of Beauveria
pigments on erythrocyte membranes. Toxicon 35, 1351-1356.

Jegorov, A., Sedmera, P., Matha, V., Simek, P., Zahradnickova, Landa,
Z., Eyal, J., 1994. Beauverolides L and La from Beauveria tenella and
Paecilomyces fumosoroseus. Phytochemistry 37, 1301-1303.

Jones, K.D., 1994. Aspects of the biology and biological control of the
European corn borer in North Carolina. Ph.D. thesis, Department of
Entomology, North Carolina State University.

Kikuchi, H., Miyagawa, Y., Nakamura, K., Sahashi, Y., Inatomi, S.,
Oshima, Y., 2004. A novel carbon skeletal trichothecane, tenuipesine
A, isolated from an entomopathogenic fungus, Paecilomyces tenuipes.
Organic Letters 6, 4531-4533.

Kodaira, Y., 1962. Studies on the new toxic substances to insects,
destruxin A and B, produced by Oospora destructor. Part 1. Isolation
and purification of destruxin A and B. Agricultural and Biological
Chemistry 26, 36-42.

Krasnoff, S.B., Gupta, S., 1992. Efrapeptin production by Tolypocladium
fungi (Deuteromycotina: Hyphomycetes). Intra- and inter-specific
variation. Journal of Chemical Ecology 18, 1721-1741.

Krasnoff, S.B., Gupta, S., 1994. Identification of the antibiotic phom-
alactone from the entomopathogenic fungus, Hirsutella thompsonii var.
synnematosa. Journal of Chemical Ecology 20, 293-302.

Krasnoff, S.B., Gibson, D.M., Belofsky, G.N., Gloer, K.B., Gloer, J.B.,
1996. New destruxins from the entomopathogenic fungus Aschersonia
sp.. Journal of Natural Products 59, 485-489.

Larran, S., Monaco, C., Alippi, H.E., 2001. Endophytic fungi in leaves of
Lycopersicon esculentum Mill.. World Journal of Microbiology &
Biotechnology 17, 181-184.

Larran, S., Perello, A., Simon, M.R., Moreno, V., 2002a. Isolation and
analysis of endophytic microorganisms in wheat (7riticum aestivum L.)
leaves. World Journal of Microbiology & Biotechnology 18, 683-686.

Larran, S., Rollan, C., Bruno Angeles, H., Alippi, H.E., Urrutia, M.L.,
2002b. Endophytic fungi in healthy soybean leaves. Investigacion
Agraria: Produccion y Proteccion de Vegetales 17, 173-177.

Leckie, B.M., 2002. Effects of Beauveria bassiana mycelia and metabolites
incorporated into synthetic diet and fed to larval Helicoverpa zea, and
detection of endophytic Beauveria bassiana in tomato plants using
PCR and ITS. M.S. thesis, Department of Entomology, The Univer-
sity of Tennessee.

Lee, S.-Y., Nakajima, I., Thara, F., Kinoshita, H., Nihira, T., 2005.
Cultivation of entomopathogenic fungi for the search of antibacterial
compounds. Mycopathologia 160, 321-325.

Lewis, L.C., Cossentine, J.E., 1986. Season long intraplant epizootics of
entomopathogens, Beauveria bassiana and Nosema pyrausta, in a corn
agroecosystem. Entomophaga 31, 36-69.

Lewis, L.C., Bing, L.A., 1991. Bacillus thuringiensis Berliner and Beauveria
bassiana (Balsamo) Vuillemin for European corn borer control:
program for immediate and season long suppression. Canadian
Entomologist 123, 387-393.

Lewis, L.C., Berry, E.C., Obrycki, J.J., Bing, L.A., 1996. Aptness of
insecticides (Bacillus thuringiensis and carbofuran) with endophytic
Beauveria bassiana, in suppressing larval populations of the European
corn borer. Agriculture Ecosystems & Environment 57, 27-34.

Lewis, L.C., Bruck, D.J., Gunnarson, R.D., Bidne, K.G., 2001. Assess-
ment of plant pathogenicity of endophytic Beauveria bassiana in Bt
transgenic and non-transgenic corn. Crop Science 41, 1395-1400.

Liu, J.C., Boucias, D.G., Pendland, J.C., Liu, W.Z., Maruniak, J., 1996.
The mode of action of hirsutellin A on eukaryotic cells. Journal of
Invertebrate Pathology 67, 224-228.

Lomer, C.J., Cherry, A., Denis, D., 1997. Systemic Beauveria isolates for
control of maize stem borers in Africa. In: Proceedings of the 30th
Annual Meeting of the Society for Invertebrate Pathology, Banff,
Canada, p. 44.

Mazet, 1., Hung, S.Y., Boucias, D.G., 1995. Hirsutellin A, a toxic protein
produced in vitro by Hirsutella thompsonii. Journal of Invertebrate
Pathology 64, 200-207.

Miller, J.D., MacKenzie, S., Foto, M., Adams, G.W., Findlay, J.A., 2002.
Needles of white spruce inoculated with rugulosin-producing endo-
phytes contain rugulosin reducing spruce budworm growth rate.
Mycological Research 106, 471-479.

Okane, I., Nakagiri, A., Ito, T., 1998. Endophytic fungi in leaves of
ericaceous plants. Canadian Journal of Botany 76, 657-663.

Omoto, C., McCoy, C.W., 1998. Toxicity of purified fungal toxin
hirsutellin A to the citrus rust mite Phyllocoptruta oleivora (Ash.).
Journal of Invertebrate Pathology 72, 319-322.

Ownley, B.H., Pereira, R.M., Klingeman, W.E., Quigley, N.B., Leckie,
B.M., 2004. Beauveria bassiana, a dual purpose biocontrol organism,
with activity against insect pests and plant pathogens. In: Lartey, R.T.,
Cesar, A.J. (Eds.), Emerging Concepts in Plant Health Management.
Research Signpost, India, pp. 255-269.

Petrini, O., 1981. Endophytische Pilze in Epiphytischen Araceae, Brome-
liaceae und Orchidiaceae. Sydowia 34, 135-148.

Pingel, R.L., Lewis, L.C., 1996. The fungus Beauveria bassiana (Balsamo)
Vuillemin in a corn ecosystem: its effect on the insect predator
Coleomegilla maculata De Geer. Biological Control 6, 137-141.

Pocasangre, L., Sikora, R.A., Vilich, V., Schuster, R.P., 2000. Survey of
banana endophytic fungi from Central America and screening for
biological control of the burrowing nematode (Radopholus similis).
InfoMusa 9, 3-5.

Poprawski, T.J., Robert, P.-H., Maniania, N.K., 1985. Susceptibility of
the onion maggot, Delia antiqua (Diptera: Anthomyiidae) to the
mycotoxin destruxin E. Canadian Journal of Entomology 117, 801—
802.


http://www.sipweb.org/
http://www.sipweb.org/

82 F.E. Vega et al. | Biological Control 46 (2008) 72-82

Portilla, M., 2000. Desarrollo y evaluacion de una dieta artificial para la
cria de Hypothenemus hampei. Revista Colombiana de Entomologia
26, 31-37.

Posada, F., Vega, F.E., 2005. Establishment of the fungal entomopatho-
gen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in
cocoa seedlings (Theobroma cacao). Mycologia 97, 1195-1200.

Posada, F., Vega, F.E., 2006. Inoculation and colonization of coffee
seedlings (Coffea arabica L.) with the fungal entomopathogen Beau-
veria bassiana (Ascomycota: Hypocreales). Mycoscience 47, 284-289.

Posada, F., Aime, M.C., Peterson, S.W., Rehner, S.A., Vega, F.E., 2007.
Inoculation of coffee plants with the fungal entomopathogen Beauveria
bassiana (Ascomycota: Hypocreales). Mycological Research 111, 749—
758.

Quesada-Moraga, E., Vey, A., 2004. Bassiacridin, a protein toxic for
locusts secreted by the entomopathogenic fungus Beauveria bassiana.
Mycology Research 108, 441-452.

Quesada-Moraga, E., Landa, B.B., Mufioz-Ledesma, J., Jiménez-Diaz,
R.M., Santiago-Alvarez, C., 2006. Endophytic colonization of opium
poppy, Papaver somniferum, by an entomopathogenic Beauveria
bassiana strain. Mycopathologia 161, 323-329.

Rehner, S.A., Buckley, E.P., 2005. A Beauveria phylogeny inferred from
nuclear ITS and EF1-a sequences: evidence for cryptic diversification
and links to Cordyceps teleomorphs. Mycologia 97, 84-98.

Roberts, D.W., 1981. Toxins of entomopathogenic fungi. In: Burges, H.D.
(Ed.), Microbial Control of Pests and Plant Disease 1970-1980.
Academic Press, London, pp. 441-463.

Samson, R.A., 1974. Paecilomyces and some allied Hyphomycetes. Studies
in Mycology 6, 1-119.

SAS Institute, Inc., 2001. An Introduction to the Analysis of Linear Mixed
Models Using SAS Version 8.2. SAS Institute, Inc., Cary, NC.

Shields, M.S., Lingg, A.J., Heimsch, R.C., 1981. Identification of a
Penicillium urticae metabolite which inhibits Beauveria bassiana.
Journal of Invertebrate Pathology 38, 374-377.

St.-Germain, G., Summerbell, R., 1996. Identifying Filamentous Fungi: A
Clinical Laboratory Handbook. Star Publishing Company, CA.

Steinhaus, E.A., 1949. Principles of Insect Pathology. McGraw-Hill Book
Company, Inc., Toronto.

Strasser, H., Vey, A., Butt, T.M., 2000. Are there any risks in using
entomopathogenic fungi for pest control, with particular reference to
the bioactive metabolites of Metarhizium, Tolypocladium and Beauve-
ria species? Biocontrol Science and Technology 10, 717-735.

Suryanarayanan, T.S., Kumaresan, V., Johnson, J.A., 1998. Foliar fungal
endophytes from two species of the mangrove Rhizophora. Canadian
Journal of Microbiology 44, 1003-1006.

Suryanarayanan, T.S., Senthilarasu, G., Muruganandam, V., 2000.
Endophytic fungi from Cuscuta reflexa and its host plants. Fungal
Diversity 4, 117-123.

Suryanarayanan, T.S., Wittlinger, S.K., Faeth, S.H., 2005. Endophytic
fungi associated with cacti in Arizona. Mycological Research 109, 635—
639.

Suzuki, A., Kanaoka, M., Isogai, A., Murakoshi, S., Ichinoe, M., Tamura,
S., 1977. Bassianolide, a new insecticidal cyclodepsipeptide from

Beauveria bassiana and Verticillium lecanii. Tetrahedron Letters 25,
2167-2170.

Takeda, I., Guerrero, R., Bettucci, L., 2003. Endophytic fungi of
twigs and leaves from Ilex paraguariensis in Brazil. Sydowia 55,
372-380.

Tian, X.L., Cao, L.X., Tan, H.M., Zeng, Q.G., Jia, Y.Y., Han, W.Q.,
Zhou, S.N., 2004. Study on the communities of endophytic fungi
and endophytic actinomycetes from rice and their antipathogenic
activities in vitro. World Journal of Microbiology & Biotechnology
20, 303-309.

Vakili, N.G., 1990. Biocontrol of stalk rot in corn, pp. 87-105. In:
Proceedings of the Forty-fourth Annual Corn and Sorghum Industry
Research Conference, December 6-7, 1989, Chicago, IL. American
Seed Trade Association, Washington, DC.

Vicari, M., Hatcher, P.E., Ayres, P.G., 2002. Combined effect of foliar and
mycorrhizal endophytes on an insect herbivore. Ecology 83, 2452—
2462.

Villacorta, A., 1985. Dieta meridica para criacao de sucessivas geracoes de
Hypothenemus hampei Ferrari 1867 (Coleoptera: Scolytidae). Anais da
Sociedade Entomoldgica do Brasil 14, 315-319.

Vining, L.C., Kelleher, W.J., Schwarting, A.E., 1962. Oosporein produc-
tion by a strain of Beauveria bassiana originally identified as Amanita
muscaria. Canadian Journal of Microbiology 8, 931-933.

Wagenar, M.M., Gibson, D.M., Clardy, J., 2002. Akanthomycin, a new
antibiotic pyridone from the entomopathogenic fungus Akanthomyces
gracilis. Organic Letters 4, 671-673.

Wagner, B.L., Lewis, L.C., 2000. Colonization of corn, Zea mays, by the
entomopathogenic fungus Beauveria bassiana. Applied and Environ-
mental Microbiology 66, 3468-3473.

Wainwright, M., Betts, R.P., Teale, D.M., 1986. Antibiotic activity of
oosporein from Verticillium psalliotae. Transactions of the British
Mycological Society 86, 168-170.

West, C.P., Izekor, E., Oosterhuis, D.M., Robbins, R.T., 1988. The effect
of Acremonium coenophialum on the growth and nematode infestation
of tall fescue. Plant Soil 112, 3-6.

White, J.F., Cole, G.T., 1986. Endophyte-host associations in forage
grasses. V. Occurrence of fungal endophytes in certain species of
Bromus and Poa. Mycologia 78, 852-856.

White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct
sequencing of fungal ribosomal RNA genes for phylogenetics. In:
Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR
Protocols: A Guide to Methods and Applications. Academic Press,
San Diego, pp. 315-322.

Wicklow, D.T., Roth, S., Deyrup, S.T., Gloer, J.B., 2005. A protective
endophyte of maize: Acremonium zeae antibiotics inhibitory to
Aspergillus flavus and Fusarium verticillioides. Mycological Research
109, 610-618.

Wilson, D., 1995. Endophyte: the evolution of a term, and clarification of
its use and definition. Oikos 73, 274-276.

Zizka, J., Weiser, J., 1993. Effect of beauvericin, a toxic metabolite of
Beauveria bassiana, on the ultrastructure of Culex pipiens autogenicus
larvae. Cytobios 75, 13-19.



	Entomopathogenic fungal endophytes
	Introduction
	Materials and methods
	Endophyte isolation
	Endophyte DNA extraction
	Endophyte DNA sequencing and analyses
	Identification of isolates
	Insect bioassays

	Results
	Discussion
	Acknowledgments
	References


